24,958 research outputs found

    Attrition in Information Dissemination Relationships with Industry

    Get PDF
    Factors affecting continued technical information service subscription to the NASA regional dissemination cente

    A proposal for founding mistrustful quantum cryptography on coin tossing

    Full text link
    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multi-party computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signalling constraints into account. The best that can be hoped for, in general, are quantum protocols computationally secure against quantum attack. I describe here a method for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin tossing protocol. No security proof is attempted, but I sketch reasons why these protocols might resist quantum computational attack.Comment: Title altered in deference to Physical Review's fear of question marks. Published version; references update

    Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    Get PDF
    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model

    The perception of three-dimensionality across continuous surfaces

    Get PDF
    The apparent three-dimensionality of a viewed surface presumably corresponds to several internal preceptual quantities, such as surface curvature, local surface orientation, and depth. These quantities are mathematically related for points within the silhouette bounds of a smooth, continuous surface. For instance, surface curvature is related to the rate of change of local surface orientation, and surface orientation is related to the local gradient of distance. It is not clear to what extent these 3D quantities are determined directly from image information rather than indirectly from mathematically related forms, by differentiation or by integration within boundary constraints. An open empirical question, for example, is to what extent surface curvature is perceived directly, and to what extent it is quantitative rather than qualitative. In addition to surface orientation and curvature, one derives an impression of depth, i.e., variations in apparent egocentric distance. A static orthographic image is essentially devoid of depth information, and any quantitative depth impression must be inferred from surface orientation and other sources. Such conversion of orientation to depth does appear to occur, and even to prevail over stereoscopic depth information under some circumstances

    p-topological and p-regular: dual notions in convergence theory

    Full text link
    The natural duality between "topological" and "regular," both considered as convergence space properties, extends naturally to p-regular convergence spaces, resulting in the new concept of a p-topological convergence space. Taking advantage of this duality, the behavior of p-topological and p-regular convergence spaces is explored, with particular emphasis on the former, since they have not been previously studied. Their study leads to the new notion of a neighborhood operator for filters, which in turn leads to an especially simple characterization of a topology in terms of convergence criteria. Applications include the topological and regularity series of a convergence space.Comment: 12 pages in Acrobat 3.0 PDF forma
    corecore